УТВЕРЖДЕНО

ореписнием Ученого совета Института медицины, экологии и физической культуры иноня 2020 г., протокол № 10/220

_____/ Мидленко В.И. / (подпись, расшифровка подписи)

от «22» июня 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина	БИОГЕННЫЕ ЭЛЕМЕНТЫ
Факультет	Экологический
Кафедра	Общей и биологической химии
Курс	1

Направление (специальность) 04.03.01 Химия

Направленность (профиль/специализация) **Химия окружающей среды, химическая** экспертиза и экологическая безопасность

Форма обучения Очная

Дата введения в учебный процесс УлГУ: <u>«1» сентября 2020 г.</u>
Программа актуализированана заседании кафедры: протокол № от 20 г. Программа актуализированана заседании кафедры: протокол № от 20 г. Программа актуализированана заседании кафедры: протокол № от 20 г.

Сведения о разработчиках:

ФИО	Кафедра	Должность, ученая степень, звание
Иванова Лидия Александровна	-	Доцент, кандидат биологических наук

Форма А Страница 1из 18

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

1 ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины-является формирование системных знаний, которые необходимы студентам при рассмотрении физико-химической сущности и механизмов процессов, происходящих в природе и живом организме на молекулярном и клеточном уровнях. В результате освоения данной дисциплины должны быть сформированы умения выполнять в необходимых случаях расчеты параметров этих процессов, что позволит более глубоко понять функции отдельных систем организма, а также его взаимодействие с окружающей средой.

Задачи освоения дисциплины:

- осветить ключевые вопросы программы, стимулировать студентов к последующей самостоятельной работе.
 - сформировать умения и навыки для решения проблемных и ситуационных задач;
- сформировать практические навыки постановки и выполнения экспериментальной работы.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП:

Дисциплина относится к профессиональному циклу, вариативная часть, дисциплина по выбору. Для изучения дисциплины необходимы знания вопросов предшествующих изучаемых дисциплин — неорганической химии, аналитической химии, органической химии, физической химии. Данная дисциплина изучается на 3 курсе.

ЗПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОПОП

№	Индекс	Содержание	В результате	В результате изучения учебной дисциплины				
Π/Π	компет	компетенции	06	бучающиеся должн	ы:			
	енции	(или ее части)	знать	уметь	владеть			
1	ПК-1	Способен	основные	анализировать	навыками			
		выполнять	методы и	результаты	интерпретации			
		стандартные	приборы	химических	результатов			
		операции по	химического	экспериментов	химического			
		предлагаемым	эксперимента		эксперимента			
		методикам						
2	ПК-3	Владеет системой	фундаментальны	применять	системой			
		фундаментальных	е законы и	фундаментальны	фундаментальных			
		химических	понятия химии;	е законыи	понятий и			
		понятий		понятия химии;	методологических			
					аспектов химии.			

Форма А Страница 2из 18

4. ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ

4.1. Объем дисциплины в зачетных единицах (всего) 2 ЗЕТ

4.2. По видам учебной работы (в часах): 72

	Количество часов (форма обучения - очная)		
Вид учебной работы	Всего по плану	В т.ч. по семестрам 2	
Контактная работа обучающихся с преподавателем в соответствии с УП	54	54	
Аудиторные занятия:	54	54	
лекции	18	18	
семинары и практические занятия	36	36	
лабораторные работы, практикумы	-	-	
Самостоятельная работа	18	18	
Форма текущего контроля знаний и контроля самостоятельной работы: тестирование, контрольная работа, коллоквиум, реферат и др.(не менее 2 видов)	Коллоквиум, тестирование	Коллоквиум, тестирование	
Курсовая работа	-	-	
Виды промежуточной аттестации (зачет)	-	-	
Всего часов по дисциплине	72	72	

4.3. Содержание дисциплины. Распределение часов по темам и видам учебной работы:

Форма обучения очная

		Виды учебных занятий				Форма	
		Аудиторные занятия			в т.ч.		•
Название и разделов и тем	Всего	лекци и	практичес кие занятия, семинары	шаоорато	занятия в интеракти вной форме	Самостоя тельная работа	текущег о контрол я знаний
1	2	3	4	5	6	7	8
Тема 1. Биогенные элементы	8	2	4	-	2	2	Коллокв иум №1
Тема 2.Водород.	8	2	4	1	2	2	Коллокв иум №2
Тема 3. Биогенные элементы VIIA- подгруппы	8	2	4	-	2	2	Коллокв иум №3

Форма А Страница Зиз 18

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

Тема 4. Биогенные элементы VIA-подгруппы	8	2	4	-	2	2	Коллокв иум №4, тестиров ание №1
Тема 5. Биогенные элементы VA-подгруппы	8	2	4	-	2	2	Коллокв иум №5
Тема 6. Биогенные элементы IVA-подгруппы	8	2	4	-	2	2	Коллокв иум №6
Тема 7. Биогенные элементы IA- и IIA подгрупп	8	2	4	-	2	2	Коллокв иум №7
Тема 8. Биогенные элементы IIIA-подгруппы	8	2	4	-	2	2	Коллокв иум №8
Тема 9. Биогенные элементы побочных подгрупп Периодической системы Д.И.Менделеева	8	2	4	-	2	2	Коллокв иум №9, тестиров ание №2
Итого:	72	18	36	-	18	18	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Тема 1. Биогенные элементы

Новое направление в химии — бионеорганическая химия. Химические элементы биосферы. Классификация химических элементов в организме человека. Закономерности распределения биогенных элементов по s-, p-, d-, f- блокам Периодической системы Д.И. Менделеева. Биологическое значение химических элементов в организме человека, животных ирастений.

5.2 Тема 2.Водород.

Значение водорода как наиболее распространенного элемента Вселенной. Своеобразие строения атома водорода, физических и химических свойств этого элемента. Бинарные соединения водорода с электроотрицательными элементами, их поведениев водных растворах. Гидратация протона. Ковалентные гидриды элементов III А-IVA — подгрупп, их основные физические и химические свойства. Гидриды щелочных и щелочноземельных металлов, их солеобразный характер. Гидрид—ион как восстановитель и лиганл.

Вода, геометрия и свойства ее молекулы. Структура льда и жидкой воды. Химические свойства воды. Вода как основной компонент живого организма, растворитель и лиганд. Роль воды как средобразующего вещества клетки. Экологические аспекты водопользования.

5.3 Тема 3. Биогенные элементы VIIA-подгруппы

Электронное строение атомов галогенов и закономерности изменения свойств галогенов в подгруппе. Природа образуемых галогенами химических связей. Степени окисления галогенов в соединениях. Причины отсутствия в природе ковалентных соединений галогенов.

Форма А Страница 4из 18

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

Особенности связей и строения ковалентных соединений фтора. Фтороводород, фтороводородная (плавиковая) кислота.

Особенности связей и строения ковалентных соединений хлора в сравнении с соединениями фтора. Хлороводород, хлороводородная (соляная) кислота. Соединения с положительными степенями окисления хлора, их химические свойства.

Роль галогенов в биохимии. Особенности хлора как биогенного элемента. Роль хлора в клетке, его круговорот в природе. Фтор как биологически необходимый элемент и как элемент-загрязнитель окружающей среды. Засоление почв. Йод как микроэлемент.

5.4 Тема 4. Биогенные элементы VIA-подгруппы

Значение кислорода в энергетике жизни. Круговорот кислорода как основного элемента земной коры. Защитное действие озонового слоя атмосферы.

Молекулярный кислород как окислитель. Термодинамическая устойчивость и распространенность кислородных соединений.

Молекулярный кислород в биоэнергетике. Роль функциональных кислородсодержащих групп в биомолекулах.

Особенности химических связей серы. Прочность связей серы с кислородом и водородом. Термодинамическая устойчивость бинарных соединений серы, их реакции гидролиза.

Соединения серы с водородом и кислородом. Серная кислота, сульфаты. Сернистый газ, сернистая кислота, сульфиты. Сероводород и полисульфаты. Серосодержащие биологическиактивные соединения.

Сера как биогенный элемент. Применение сульфатов и других соединений серы всельском хозяйстве. Экологическая опасность сернистого газа.

5.5 Тема 5. Биогенные элементы VA-подгруппы

Значение азота и фосфора как биогенных элементов. Их круговорот в природе.

Химия молекулярного азота, аммиака и его производных, оксидов азота, азотной кислоты и ее солей.

Особенности азота как биогенного элемента. Специфика химических связей азота в биомолекулах. Важные азотсодержащие биомолекулы, их значение в деятельности растительных и животных клеток.

Значение азота как элемента питания. Круговорот азота в природе. Азотные удобрения, экологические аспекты их применения.

Фосфор, его соединения, их физические и химические свойства.

Химия ортофосфорной кислоты и ее солей. Конденсированные фосфорные кислоты и их соли. Особенности фосфора как биогенного элемента. Специфика поведения и значениесоединений фосфора в биосистемах. Важные биомолекулы, содержащие фосфор. Значениефосфора как элемента питания.

Фосфорные удобрения и экологические аспекты их применения.

5.6 Тема 6. Биогенные элементы IVA-подгруппы

Углерод как важнейший биогенный элемент. Аллотропия углерода. Применение активированного угля в качестве адсорбента. Химические свойства углерода.

Химия неорганических соединений углерода: оксид углерода (II) и (IV). Физиологическое действие оксида углерода (II). Роль углекислого газа в питании и дыхании. Парниковый эффект углекислого газа. Значение карбонатов в природе. Круговорот углерода в природе. Экологические аспекты химии углерода.

Кремний как почвообразующий элемент. Физические и химические свойства кремния. Кремнезем. Кварц. Кварцевое стекло. Кремниевые кислоты. Силикаты и алюмосиликаты как почвообразующие материалы. Особенности строения водонабухающих силикатов. Их значение для плодородия почв. Силикаты в природе. Каолин. Роль силикатов как строительных материалов.

Форма А Страница 5из 18

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

Особенности химии германия, олова и свинца. Применение этих элементов и их соединений. Экологическая опасность соединений свинца.

5.7 Тема 7. Биогенные элементы IA- и IIA подгрупп

Роль натрия и калия в биохимии растений и животных. Роль натрия и калия впочвах. Химические свойства щелочных металлов. Щелочные металлы как восстановители. Катиониты и ионный обмен натрия, калия и других однозарядныхионов почвенного раствора. Круговороты натрия и калия в природе.

Магний и кальций как почвообразующие и биологически активные элементы. Их ионообменное поведение в почвах. Физические и химические свойства магния и кальция, их восстановительные свойства.

Солеобразные, твердые и водорастворимые соединения: гидриды, галогениды, оксиды, гидроксиды, сульфиды, нитриды, карбиды. Кристаллогидраты. Растворимость их солей в воде. Комплексные соединения магния и кальция, их строение и прочность. Соли магния и кальция как основа строительных материалов. Временная и постоянная жесткость воды. Способы умягчения воды

5.8 Тема 8. Биогенные элементы ША-подгруппы

Бор и алюминий в биосистемах. Бор как микроэлемент, алюминий как почвообразующий элемент. Металлический алюминий как конструкционный материал

Отличие электронного строения атомов бора и алюминия от строения других элементов подгруппы.

Физические и химические свойства элементного бора. Термодинамика образования бинарных соединений бора, их строение и химические свойства. Кислородные соединения бора: оксид, борная кислота, поликислоты бора, их соли.

Физические и химические свойства металлического алюминия. Термодинамика образования бинарных соединений алюминия из простых веществ, важнейшие химические свойства бинарных соединений алюминия.

Оксиды и гидроксиды алюминия, разнообразие их строения, амфотерность этих соединений. Аквакомплекс катиона Al^{3+} , особенности его строения и поведения в растворах.

Соли алюминия, их кристаллогидраты, растворимость в воде и гидролиз. Комплексные соединения алюминия и бора, их устойчивость в водных растворах. Алюмосиликаты, их строение.

5.9 Тема 9. Биогенные элементы побочных подгрупп Периодической системы Д.И.Менделеева

Зависимость свойств переходных металлов от электронных структур s-, p-, d- и f- подуровней атомов. Особенности атомных характеристик d-металлов, отличающие их от s-металлов. Физические свойства переходных металлов и причины ихразнообразия. Общие химические особенности d-металлов. Высшие оксиды 3d-металлов и их производные: кислоты, поликислоты, соли.Соединения, содержащие атомы 3d-металлов в низших степенях окисления (+1, +2, +3); оксиды, гидроксиды, аквакомплексы. Их окислительно-восстановительная устойчивость. Комплексные соединения двух и трехзарядных катионов 3d-металлов. Особенности химии важнейших биогенных d-металлов: меди, цинка, марганца, железа, кобальта, молибдена.

6. ТЕМЫ ПРАКТИЧЕСКИХ И СЕМИНАРСКИХ ЗАНЯТИЙ 6.1 Тема 1. Биогенные элементы

Вопросы к теме:

Форма А Страница биз 18

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

- 1. Новое направление в химии бионеорганическая химия. Химические элементы биосферы.
- 2. Классификация химических элементов в организме человека.
- 3. Закономерности распределения биогенных элементов по s-, p-, d-, f- блокам Периодической системы Д.И. Менделеева.
- 4. Биологическое значение химических элементов в организме человека, животных и растений.

6.2 Тема 2.Водород.

Вопросы к теме:

- 1. Значение водорода как наиболее распространенного элемента Вселенной. Своеобразие строения атома водорода, физических и химических свойств этого элемента.
- 2. Бинарные соединения водорода с электроотрицательными элементами, их поведение в водных растворах. Гидратация протона.
- 3. Ковалентные гидриды элементов IIIA-IVA подгрупп, их основные физические и химические свойства. Гидриды щелочных и щелочноземельных металлов, их солеобразный характер. Гидрид—ион как восстановитель и лиганд.
- 4. Вода, геометрия и свойства ее молекулы. Структура льда и жидкой воды. Химические свойства воды. Вода как основной компонент живого организма, растворитель и лиганд.
- 5. Роль воды как средобразующего вещества клетки. Экологические аспекты водопользования.

6.3 Тема 3. Биогенные элементы VIIA-подгруппы

Вопросы к теме:

- 1. Электронное строение атомов галогенов и закономерности изменения свойств галогенов в подгруппе. Природа образуемых галогенами химических связей. Степени окисления галогенов в соединениях. Причины отсутствия в природе ковалентных соединений галогенов.
- 2. Особенности связей и строения ковалентных соединений фтора. Фтороводород, фтороводородная (плавиковая) кислота.
- 3. Особенности связей и строения ковалентных соединений хлора в сравнении с соединениями фтора. Хлороводород, хлороводородная (соляная) кислота. Соединения с положительными степенями окисления хлора, их химические свойства.
- 4. Роль галогенов в биохимии. Особенности хлора как биогенного элемента. Роль хлора в клетке, его круговорот в природе. Фтор как биологически необходимый элемент и как элемент-загрязнитель окружающей среды. Засоление почв. Йод как микроэлемент.

6.4 Тема 4. Биогенные элементы VIA-подгруппы

Вопросы к теме:

- 1. Значение кислорода в энергетике жизни. Круговорот кислорода как основного элемента земной коры. Защитное действие озонового слоя атмосферы.
- 2. Молекулярный кислород как окислитель. Термодинамическая устойчивость и распространенность кислородных соединений. Молекулярный кислород в биоэнергетике. Роль функциональных кислородсодержащих групп в биомолекулах.

Форма А Страница 7из 18

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

- 3. Особенности химических связей серы. Прочность связей серы с кислородом и водородом. Термодинамическая устойчивость бинарных соединений серы, их реакции гидролиза.
- 4. Соединения серы с водородом и кислородом. Серная кислота, сульфаты. Сернистый газ, сернистая кислота, сульфиты. Сероводород и полисульфаты. Серосодержащие биологически активные соединения.
- 5. Сера как биогенный элемент. Применение сульфатов и других соединений серы в сельском хозяйстве. Экологическая опасность сернистого газа.

6.5 Тема 5. Биогенные элементы VA-подгруппы

Вопросы к теме:

- 1. Значение азота и фосфора как биогенных элементов. Их круговорот в природе.
- 2. Химия молекулярного азота, аммиака и его производных, оксидов азота, азотной кислоты и ее солей.
- 3. Особенности азота как биогенного элемента. Специфика химических связей азота в биомолекулах. Важные азотсодержащие биомолекулы, их значение в деятельности растительных и животных клеток.
- 4. Значение азота как элемента питания. Круговорот азота в природе. Азотные удобрения, экологические аспекты их применения.
- 5. Фосфор, его соединения, их физические и химические свойства.
- 6. Химия ортофосфорной кислоты и ее солей. Конденсированные фосфорные кислоты и их соли. Особенности фосфора как биогенного элемента. Специфика поведения и значение соединений фосфора в биосистемах. Важные биомолекулы, содержащие фосфор. Значение фосфора как элемента питания.
- 7. Фосфорные удобрения и экологические аспекты их применения.

6.6 Тема 6. Биогенные элементы IVA-подгруппы

Вопросы к теме:

- 1. Углерод как важнейший биогенный элемент. Аллотропия углерода. Применение активированного угля в качестве адсорбента. Химические свойства углерода.
- 2. Химия неорганических соединений углерода: оксид углерода (II) и (IV). Физиологическое действие оксида углерода (II). Роль углекислого газа в питании и дыхании. Парниковый эффект углекислого газа. Значение карбонатов в природе. Круговорот углерода в природе. Экологические аспекты химии углерода.
- 3. Кремний как почвообразующий элемент. Физические и химические свойства кремния. Кремнезем. Кварц. Кварцевое стекло. Кремниевые кислоты. Силикаты и алюмосиликаты как почвообразующие материалы. Особенности строения водонабухающих силикатов. Их значение для плодородия почв. Силикаты в природе. Каолин. Роль силикатов как строительных материалов.
- 4. Особенности химии германия, олова и свинца. Применение этих элементов и их соединений. Экологическая опасность соединений свинца.

6.7 Тема 7. Биогенные элементы ІА- и ІІА подгрупп

Вопросы к теме:

Форма А Страница 8из 18

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

- 1. Роль натрия и калия в биохимии растений и животных. Роль натрия и калия в почвах. Химические свойства щелочных металлов. Щелочные металлы как восстановители. Катиониты и ионный обмен натрия, калия и других однозарядных ионов почвенного раствора. Круговороты натрия и калия в природе.
- 2. Магний и кальций как почвообразующие и биологически активные элементы. Их ионообменное поведение в почвах. Физические и химические свойства магния и кальция, их восстановительные свойства.
- 3. Солеобразные, твердые и водорастворимые соединения: гидриды, галогениды, оксиды, гидроксиды, сульфиды, нитриды, карбиды. Кристаллогидраты. Растворимость их солей в воде. Комплексные соединения магния и кальция, их строение и прочность. Соли магния и кальция как основа строительных материалов. Временная и постоянная жесткость воды. Способы умягчения воды.

6.8 Тема 8. Биогенные элементы IIIA-подгруппы

Вопросы к теме:

- 1. Бор и алюминий в биосистемах. Бор как микроэлемент, алюминий как почвообразующий элемент. Металлический алюминий как конструкционный материал
- 2. Отличие электронного строения атомов бора и алюминия от строения других элементов подгруппы. Физические и химические свойства элементного бора. Термодинамика образования бинарных соединений бора, их строение и химические свойства. Кислородные соединения бора: оксид, борная кислота, поликислоты бора, их соли.
- 3. Физические и химические свойства металлического алюминия. Термодинамика образования бинарных соединений алюминия из простых веществ, важнейшие химические свойства бинарных соединений алюминия.
- 4. Оксиды и гидроксиды алюминия, разнообразие их строения, амфотерность этих соединений. Аквакомплекс катиона Al^{3+} , особенности его строения и поведения в растворах.
- 5. Соли алюминия, их кристаллогидраты, растворимость в воде и гидролиз. Комплексные соединения алюминия и бора, их устойчивость в водных растворах. Алюмосиликаты, их строение.

6.9 Тема 9. Биогенные элементы побочных подгрупп Периодической системы Д.И.Менделеева

Вопросы к теме:

- 1. Зависимость свойств переходных металлов от электронных структур s-, p-, d- и f- подуровней атомов. Особенности атомных характеристик d-металлов, отличающие их от s-металлов. Физические свойства переходных металлов и причины их разнообразия.
- 2. Общие химические особенности d-металлов. Высшие оксиды 3d-металлов и их производные: кислоты, поликислоты, соли.
- 3. Соединения, содержащие атомы 3d-металлов в низших степенях окисления (+1, +2, +3); оксиды, гидроксиды, аквакомплексы. Их окислительно-восстановительная устойчивость. Комплексные соединения двух и трехзарядных катионов 3d-металлов.

Форма А Страница 9из 18

4. Особенности химии важнейших биогенных d-металлов: меди, цинка, марганца, железа, кобальта, молибдена.

7. ЛАБОРАТОРНЫЕ РАБОТЫ, ПРАКТИКУМЫ

Не предусмотрены.

8. ТЕМАТИКА КУРСОВЫХ, КОНТРОЛЬНЫХ РАБОТ, РЕФЕРАТОВ

Данный вид работы не предусмотрен УП

9. ПЕРЕЧЕНЬ ВОПРОСОВ К ЗАЧЕТУ

- 1. Новое направление в химии бионеорганическая химия. Химические элементы биосферы.
- 2. Классификация химических элементов в организме человека.
- 3. Закономерности распределения биогенных элементов по s-, p-, d-, f- блокам Периодической системы Д.И. Менделеева.
- 4. Биологическое значение химических элементов в организме человека, животных и растений.
- 5. Значение водорода как наиболее распространенного элемента Вселенной. Своеобразие строения атома водорода, физических и химических свойств этого элемента.
- 6. Бинарные соединения водорода с электроотрицательными элементами, их поведение в водных растворах. Гидратация протона.
- 7. Ковалентные гидриды элементов IIIA-IVA подгрупп, их основные физические и химические свойства. Гидриды щелочных и щелочноземельных металлов, их солеобразный характер. Гидрид—ион как восстановитель и лиганд.
- 8. Вода, геометрия и свойства ее молекулы. Структура льда и жидкой воды. Химическиесвойства воды. Вода как основной компонент живого организма, растворитель и лиганд.
- 9. Роль воды как средобразующего вещества клетки. Экологические аспекты водопользования.
- 10. Электронное строение атомов галогенов и закономерности изменения свойств галогенов в подгруппе. Природа образуемых галогенами химических связей. Степени окислениягалогенов в соединениях. Причины отсутствия в природе ковалентных соединений галогенов.
- 11. Особенности связей и строения ковалентных соединений фтора. Фтороводород, фтороводородная (плавиковая) кислота.
- 12. Особенности связей и строения ковалентных соединений хлора в сравнении с соединениями фтора. Хлороводород, хлороводородная (соляная) кислота. Соединения с положительными степенями окисления хлора, их химические свойства.

Форма А Страница 10из 18

Ф-Рабочая программа дисциплины

- 13. Роль галогенов в биохимии. Особенности хлора как биогенного элемента. Роль хлора в клетке, его круговорот в природе. Фтор как биологически необходимый элемент и как элемент-загрязнитель окружающей среды. Засоление почв. Йод как микроэлемент.
- 14. Значение кислорода в энергетике жизни. Круговорот кислорода как основного элемента земной коры. Защитное действие озонового слоя атмосферы.
- 15. Молекулярный кислород как окислитель. Термодинамическая устойчивость и распространенность кислородных соединений. Молекулярный кислород в биоэнергетике. Роль функциональных кислородсодержащих групп в биомолекулах.
- 16. Особенности химических связей серы. Прочность связей серы с кислородом и водородом. Термодинамическая устойчивость бинарных соединений серы, их реакции гидролиза.
- 17. Соединения серы с водородом и кислородом. Серная кислота, сульфаты. Сернистый газ, сернистая кислота, сульфиты. Сероводород и полисульфаты. Серосодержащие биологически активные соединения.
- 18. Сера как биогенный элемент. Применение сульфатов и других соединений серы в сельском хозяйстве. Экологическая опасность сернистого газа.
- 19. Значение азота и фосфора как биогенных элементов. Их круговорот в природе.
- 20. Химия молекулярного азота, аммиака и его производных, оксидов азота, азотной кислоты и ее солей.
- 21. Особенности азота как биогенного элемента. Специфика химических связей азота вбиомолекулах. Важные азотсодержащие биомолекулы, их значение в деятельности растительных и животных клеток.
- 22. Значение азота как элемента питания. Круговорот азота в природе. Азотные удобрения, экологические аспекты их применения.
- 23. Фосфор, его соединения, их физические и химические свойства.
- 24. Химия ортофосфорной кислоты и ее солей. Конденсированные фосфорные кислоты иих соли. Особенности фосфора как биогенного элемента. Специфика поведения и значение соединений фосфора в биосистемах. Важные биомолекулы, содержащие фосфор. Значение фосфора как элемента питания.
- 25. Фосфорные удобрения и экологические аспекты их применения.
- 26. Углерод как важнейший биогенный элемент. Аллотропия углерода. Применение активированного угля в качестве адсорбента. Химические свойства углерода.
- 27. Химия неорганических соединений углерода: оксид углерода (II) и (IV). Физиологическое действие оксида углерода (II). Роль углекислого газа в питании и дыхании. Парниковый эффект углекислого газа. Значение карбонатов в природе. Круговорот углерода в природе. Экологические аспекты химии углерода.
- 28. Кремний как почвообразующий элемент. Физические и химические свойства кремния. Кремнезем. Кварц. Кварцевое стекло. Кремниевые кислоты. Силикаты и алюмосиликаты как почвообразующие материалы. Особенности строения

Форма А Страница 11из 18

Ф-Рабочая программа дисциплины

- водонабухающих силикатов. Ихзначение для плодородия почв. Силикаты в природе. Каолин. Роль силикатов как строительных материалов.
- 29. Особенности химии германия, олова и свинца. Применение этих элементов и их соединений. Экологическая опасность соединений свинца.
- 30. Роль натрия и калия в биохимии растений и животных. Роль натрия и калия в почвах. Химические свойства щелочных металлов. Щелочные металлы как восстановители. Катиониты и ионный обмен натрия, калия и других однозарядных ионов почвенного раствора. Круговороты натрия и калия в природе.
- 31. Магний и кальций как почвообразующие и биологически активные элементы. Их ионообменное поведение в почвах. Физические и химические свойства магния и кальция, их восстановительные свойства.
- 32. Солеобразные, твердые и водорастворимые соединения: гидриды, галогениды, оксиды, гидроксиды, сульфиды, нитриды, карбиды. Кристаллогидраты. Растворимость их солей в воде.Комплексные соединения магния и кальция, их строение и прочность. Соли магния и кальция как основа строительных материалов. Временная и постоянная жесткость воды. Способы умягчения воды.
- 33. Бор и алюминий в биосистемах. Бор как микроэлемент, алюминий как почвообразующий элемент. Металлический алюминий как конструкционный материал
- 34. Отличие электронного строения атомов бора и алюминия от строения других элементов подгруппы. Физические и химические свойства элементного бора. Термодинамика образования бинарных соединений бора, их строение и химические свойства. Кислородные соединения бора: оксид, борная кислота, поликислоты бора, их соли.
- 35. Физические и химические свойства металлического алюминия. Термодинамика образования бинарных соединений алюминия из простых веществ, важнейшие химические свойства бинарных соединений алюминия.
- 36. Оксиды и гидроксиды алюминия, разнообразие их строения, амфотерность этих соединений. Аквакомплекс катиона Al^{3+} , особенности его строения и поведения в растворах.
- 37. Соли алюминия, их кристаллогидраты, растворимость в воде и гидролиз. Комплексные соединения алюминия и бора, их устойчивость в водных растворах. Алюмосиликаты, их строение.
- 38. Зависимость свойств переходных металлов от электронных структур s-, p-, d- и f- подуровней атомов. Особенности атомных характеристик d-металлов, отличающие их от s-металлов. Физические свойства переходных металлов и причины их разнообразия.
- 39. Общие химические особенности d-металлов. Высшие оксиды 3d-металлов и их производные: кислоты, поликислоты, соли.
- 40. Соединения, содержащие атомы 3d-металлов в низших степенях окисления (+1, +2, +3); оксиды, гидроксиды, аквакомплексы. Их окислительно-восстановительная

Форма А Страница 12из 18

устойчивость. Комплексные соединения двух и трехзарядных катионов 3dметаллов.

41. Особенности химии важнейших биогенных d-металлов: меди, цинка, марганца, железа, кобальта, молибдена.

10 САМОСТОЯТЕЛЬНАЯ РАБОТА ОБУЧАЮЩИХСЯ

Содержание, требования, условия и порядок организации самостоятельной работы обучающихся с учетом формы обучения определяется в соответствии с «Положением об организации самостоятельной работы обучающихся», утвержденным Ученым советом УлГУ (протокол № 8/268 от 26.03.19 г.).

Форма обучения: очная.

Название разделов и тем	Вид самостоятельной работы	Объем в часах	Форма контроля
элементы	Проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины. Подготовка к устному опросу и тестированию. Подготовка к сдаче зачета.	2	включение вопросов на коллоквиумах, тестировании и зачете
Тема 2.Водород.	Проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины. Подготовка к устному опросу и тестированию. Подготовка к сдаче зачета.	2	включение вопросов на коллоквиумах, тестировании и зачете
Тема 3. Биогенные элементы VIIA-подгруппы	Проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины. Подготовка к устному опросу и тестированию. Подготовка к сдаче зачета.	2	включение вопросов на коллоквиумах, тестировании и зачете

Форма А Страница 13из 18

Ф-Рабочая программа дисциплины

		I I		
Тема 4. элементы подгруппы	VIA-	Проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины. Подготовка к устному опросу и тестированию. Подготовка к сдаче зачета.	2	включение вопросов на коллоквиумах, тестировании и зачете
Тема 5. элементы подгруппы	VA-	Проработка учебного материала	2	включение вопросов на коллоквиумах, тестировании и зачете
Тема б. элементы подгруппы	IVA-	Проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины. Подготовка к устному опросу и тестированию. Подготовка к сдаче зачета.	2	включение вопросов на коллоквиумах, тестировании и зачете
Тема 7. элементы подгрупп	Биогенные IA- и IIA	Проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины. Подготовка к устному опросу и тестированию. Подготовка к сдаче зачета.	2	включение вопросов на коллоквиумах, тестировании и зачете
Тема 8. элементы подгруппы	IIIA-	Проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины. Подготовка к устному опросу и тестированию. Подготовка к сдаче зачета.	2	включение вопросов на коллоквиумах, тестировании и зачете
Тема 9. элементы подгрупп Периодиче системы Д.И.Менде	побочных ской	Проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины. Подготовка к устному опросу и тестированию. Подготовка к сдаче зачета.	2	включение вопросов на коллоквиумах, тестировании и зачете

Форма А Страница 14из 18

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

11 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕДИСЦИПЛИНЫ

а) Список рекомендуемой литературы

Основная:

1. Никитина, Н. Г. Общая и неорганическая химия в 2 ч. Часть 2. Химия элементов : учебник и практикум для вузов / Н. Г. Никитина, В. И. Гребенькова. — 2-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2021. — 322 с. — (Высшее образование). — ISBN 978-5-534-04787-5. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/472752

Ермолаева В.И., Химия элементов : Учеб. пособие / Ермолаева В.И., Горшкова В.М., Слынько Л.Е.; Под ред. А.И. Захарова. - М. : Издательство МГТУ им. Н. Э. Баумана, 2007. - 176 с. - ISBN 978-5-7038-3009-3 - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL : http://www.studentlibrary.ru/book/ISBN9785703830093.html

Дополнительная

- 1. *Нестеров А.А.* Химия переходных элементов [Электронный ресурс]: учебное пособие/ Нестеров А.А., Баян Е.М., Рыбальченко И.В.— Электрон. текстовые данные.— Ростов-на-Дону: Издательство Южного федерального университета, 2015.— 68 с.— Режим доступа: http://www.iprbookshop.ru/78718.html.
- 2. *Росин, И. В.* Общая и неорганическая химия в 3 т. Т. 2. Химия s-, d- и f- элементов : учебник для вузов / И. В. Росин, Л. Д. Томина. Москва : Издательство Юрайт, 2020. 492 с. (Высшее образование). ISBN 978-5-534-02292-6. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/450388

Учебно-методическая

I. Иванова Л. А. **Биогенные элементы**: методические указания для самостоятельной работы бакалавров направления подготовки $04.03.01~\mathrm{Xими}$ я / Л. А. Иванова; УлГУ, Экол. фак. - Ульяновск :УлГУ, 2019. - Загл. с экрана; Неопубликованный ресурс. - Электрон. текстовые дан. (1 файл : $576~\mathrm{K}$ Б). - Текст : электронный. http://lib.ulsu.ru/MegaPro/Download/MObject/6949

Co	Γ	rac	OB	ан	0	
-		····	UL		0.	•

Начальник отдела НБ УлГУ	/ Окунева И.А./	Haf	10.06.20
Должность сотрудника научной библиотеки	ФИО	лодпись	10.00.20

б) программное обеспечение

- 1. MicrosoftOffice
- 2. OC Windows Professional
- 3. Антиплагиат ВУЗ

в) Профессиональные базы данных, информационно-справочные системы

- 1. Электронно-библиотечные системы:
- 1.1. IPRbooks : электронно-библиотечная система : сайт / группа компаний Ай Пи Ар Медиа. Саратов, [2021]. URL: http://www.iprbookshop.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.

Форма А Страница 15из 18

- 1.2. ЮРАЙТ : электронно-библиотечная система : сайт / ООО Электронное издательство ЮРАЙТ. Москва, [2021]. URL: https://urait.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.3. Консультант студента : электронно-библиотечная система : сайт / ООО Политехресурс. Москва, [2021]. URL: https://www.studentlibrary.ru/cgi-bin/mb4x. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.4. Консультант врача : электронно-библиотечная система : сайт / ООО Высшая школа организации и управления здравоохранением-Комплексный медицинский консалтинг. Москва, [2021]. URL: https://www.rosmedlib.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.5. Большая медицинская библиотека : электронно-библиотечная система : сайт / ООО Букап. Томск, [2021]. URL: https://www.books-up.ru/ru/library/ . Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.6. Лань : электронно-библиотечная система : сайт / ООО ЭБС Лань. Санкт-Петербург, [2021]. URL: https://e.lanbook.com. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.7. **Znanium.com** : электронно-библиотечная система : сайт / ООО Знаниум. Москва, [2021]. URL: http://znanium.com . Режим доступа : для зарегистрир. пользователей. Текст : электронный.
- 1.8. ClinicalCollection : коллекция для медицинских университетов, клиник, медицинских библиотек // EBSCOhost : [портал]. URL: http://web.b.ebscohost.com/ehost/search/advanced?vid=1&sid=9f57a3e1-1191-414b-8763-e97828f9f7e1%40sessionmgr102. Режим доступа : для авториз. пользователей. Текст : электронный.
- 1.9. Русский язык как иностранный :электронно-образовательный ресурс для иностранных студентов : сайт / ООО Компания «Ай Пи Ар Медиа». Саратов, [2021]. URL: https://ros-edu.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- **2. КонсультантПлюс** [Электронный ресурс]: справочная правовая система. /ООО «Консультант Плюс» Электрон. дан. Москва :КонсультантПлюс, [2021].

3. Базы данных периодических изданий:

- 3.1. База данных периодических изданий : электронные журналы / ООО ИВИС. Москва, [2021]. URL: https://dlib.eastview.com/browse/udb/12. Режим доступа : для авториз. пользователей. Текст : электронный.
- 3.2. eLIBRARY.RU: научная электронная библиотека: сайт / ООО Научная Электронная Библиотека. Москва, [2021]. URL: http://elibrary.ru. Режим доступа: для авториз. пользователей. Текст: электронный
- 3.3. «Grebennikon» : электронная библиотека / ИД Гребенников. Москва, [2021]. URL: https://id2.action-media.ru/Personal/Products. Режим доступа : для авториз. пользователей. Текст : электронный.
- **4. Национальная электронная библиотека** : электронная библиотека : федеральная государственная информационная система : сайт / Министерство культуры РФ ; РГБ. Москва, [2021]. URL: https://нэб.рф. Режим доступа : для пользователей научной библиотеки. Текст : электронный.
- 5.SMARTImagebase// EBSCOhost: [портал].— URL:https://ebsco.smartimagebase.com/?TOKEN=EBSCO-1a2ff8c55aa76d8229047223a7d6dc9c&custid=s6895741.— Режим доступа: для авториз.пользователей.— Изображение : электронные.

6. Федеральные информационно-образовательные порталы:

Форма А Страница 16из 18

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

- 6.1. <u>Единое окно доступа к образовательным ресурсам</u> : федеральный портал / учредитель $\Phi \Gamma AOY$ ДПО ЦРГОП и ИТ. URL: http://window.edu.ru/ . Текст : электронный.
- 6.2. <u>Российское образование</u> : федеральный портал / учредитель ФГАОУ ДПО ЦРГОП и ИТ. URL: http://www.edu.ru. Текст : электронный.

7. Образовательные ресурсы УлГУ:

7.1. Электронная библиотека УлГУ: модуль АБИС Мега-ПРО / ООО «Дата Экспресс». — URL: http://lib.ulsu.ru/MegaPro/Web. — Режим доступа: для пользователей научной библиотеки. — Текст: электронный.

Согласовано:

Зам.нач. УИТиТ Должность сотрудника УИТиТ

Клочкова А.В. /

О полнись

/ 14.06.2020

10 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЫ

Учебная аудитория 212 для проведения лекций, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (с набором демонстрационного оборудования для обеспечения тематических иллюстраций в соответствии с рабочей программой дисциплины). Помещение укомплектовано специализированной мебелью на 24 посадочных мест и техническими средствами: экран настенный, доска аудиторная. Рабочее место преподавателя, WI-FI, интернет. Площадь 42,93 кв.м.

Учебная аудитория 216 для проведения, занятий лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (с набором демонстрационного оборудования для обеспечения тематических иллюстраций в соответствии с рабочей программой дисциплины). Помещение укомплектовано специализированной мебелью на 16 посадочных мест и техническими средствами: экран настенный, доска аудиторная. Рабочее место преподавателя, WI-FI, интернет. Площадь 42,93 кв.м.

Учебная аудитория для самостоятельной работы студентов 230 с доступом к ЭБС. для самостоятельной работы студентов, Wi-Fi с доступом к ЭИОС, ЭБС. Компьютерный класс укомплектованный специализированной мебелью на 32 посадочных мест и техническими средствами обучения (16 персональных компьютеров) с доступом к сети «Интернет», ЭИОС, ЭБС. Площадь 93,51 кв.м.

Читальный зал научной библиотеки (аудитория 237) с зоной для самостоятельной работы, Wi-Fi с доступом к ЭИОС, ЭБС. Аудитория укомплектована специализированной мебелью на 80 посадочных мест и оснащена компьютерной техникой с доступом к сети «Интернет», ЭИОС, ЭБС, экраном и проектором. Площадь 220,39 кв.м.

11 СПЕЦИАЛЬНЫЕ УСЛОВИЯ ДЛЯ ОБУЧАЮЩИХСЯ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ (ОВЗ) И ИНВАЛИДОВ

В случае необходимости, обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося) могут предлагаться одни из

Форма А Страница 17из 18

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

следующих вариантов восприятия информации с учетом их индивидуальных психофизических особенностей:

- для лиц с нарушениями зрения: в печатной форме увеличенным шрифтом; в форме электронного документа; в форме аудиофайла (перевод учебных материалов в аудиоформат); в печатной форме на языке Брайля; индивидуальные консультации с привлечением тифлосурдопереводчика; индивидуальные задания и консультации;
- для лиц с нарушениями слуха: в печатной форме; в форме электронного документа; видеоматериалы с субтитрами; индивидуальные консультации с привлечением сурдопереводчика; индивидуальные задания и консультации;
- для лиц с нарушениями опорно-двигательного аппарата: в печатной форме; в форме электронного документа; в форме аудиофайла; индивидуальные задания и консультации.
- Форма проведения текущего контроля успеваемости и промежуточной аттестации для обучающихся с OB3 и инвалидов устанавливается с учетом индивидуальных психофизических особенностей (устно, письменно, при помощи компьютера, в форме тестирования и т.п.). При необходимости обучающемуся предоставляется дополнительное время для подготовки ответа и (или) защиты отчета.

Разработчики: ______ доцент Л.А.Иванова

10.06.20

Форма А Страница 18из 18